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1. INTRODUCTION AND SUMMARY

1. 1 Objectives

Because the cost of airborne operations has increased

dramatically in recent years, ground-based simulators have come

to play an ever-increasing role in the training of Air Force

pilots. Consequently, one of the major forces (if not the

major force) driving training costs is the number of trainee and

instructor hours required to achieve desired proficiency in the

training simulator. Procedures that can improve training

efficiency have the potential to improve the flying skills of

Air Force pilots while substantially reducing training icosts.

Ground-based simulators have an advantage over airborne

trainers in that the informational (or perceptual) environment

in which the trainee operates may, within limitations of cost,

be designed to optimize training. In particular, there exists

the option to artificially enhance cues that are normally present

in actual flight -- and, perhaps, to create additional cues not

present in flight -- in order to increase training efficiency.

At present, however, there is no detailed, validated theory that

allows one to predict, from knowledge of the informational

environment, the degree and rate of acquisition of flying skills.

The research summarized in this study was directed toward

the long-term objective of developing an analytic tool for the

design of training procedures and the assessment of trainee

performance in the kinds of monitoring, decision, and control

tasks required for flight management. A more specific goal was

to extend the optimal control model (OCM) for pilot/vehicle

systems into a predictive tool that relates the acquisition of

continuous estimation and control strategies to the perceptual

cueing environment.
~:',:*
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Full-scale development of a model for control-strategy

development was beyond the scope of this study. As a first step

in this direction, the following three major tasks were completed:

1. reanalysis of existing manual control data to determine

the effects of practice on independent pilot model parameters,
2. exploration of various hypotheses concerning information-

processing deficits early in suggested training, and

3. feasibility testing of an approach suggested for further
model development, in which control-strategy development is

related to development of the operator's "internal model"

of the task environment.

In the process of performing the first task (model analysis),

we explored in some detail the techniques adopted for performing

a statistical analysis of model parameters. Results of this

parametric study are contained largely in the Appendix for

readers interested in methodological detail.

1.2 Approach

Model analysis performed in this study employed the existing

optimal control model for pilot/vehicle systems. This model was

considered well-suited to the long-term modeling effort for a

number of reasons:

1. The optimal control model provides agreement with data for a
wide variety of control tasks, including time-varying control
situations.

2. The model incorporates many features that derive from or are
related to known human performance characteristics.

3. The concepts of internal models and operator response
variability, which are integral to the definition of control
strategy in the OCM, are extremely appropriate in the context
of learning.

2



4. The model is capable of dealing with cue utilization in a
direct fashion, and has been used to model successfully the
influence of whole-body platform motion on asymptotic tracking
performance.

The following criteria were adopted to guide the modeling

effort pursued in this study, and they are recommended for further

model development. First, the model must account for important

trends found in the existing relevant data base. This includes

matching the effects of various aspects of the task environment

on both learning rates and asymptotic performance (i.e., how

fast the subject learns, and how well he learns).

Second, if one is to develop a predictive model for learning

behavior, the model should have a structure and parameterization

that facilitate extrapolation to new situations. Such extrapola-

tion is enhanced if we can (1) determine a minimal set of

independent model parameters that applies over the tasks of

interest, and (2) partition independent parameters into task-

related and operator-related categories.

Finally, model structure should be compatible with what is

known about human capabilities and limitations. That is, it

should "make sense" .

1.3 Organization of this Report

The results of this study are presented at three levels

of detail. The concluding section of this chapter provides an

extended summary of the research effort, highlighting key results.

Chapters 2 through 5 are recommended to readers who wish to

understand the basis for the results presented in the Summary.

Finally, two Appendices provide further details concerninq the

background material, the results, and the analysis methodology.
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Chapter 2 -- Background -- is devoted to thcee topics:

(1) a review of some relevant work in skill acquisition; (2) a

review of key features of the optimal control model, including

procedures for identifying and testing indepeadent model

parameters; and (3) a review of some evidence that suggests a

relationship between the task environment and the fidelity of

the operator's internal model of this environment.

Chapters 3-5 summarize, respectively, the results of the
principal tasks accomplished in this study: (1) analysis of

practice effects on pilot response behavior, (2) hypothesis testing,

and (3) an exploratory study of an approach for relating learning

to internal model development. Appendix A contains supplemental

analysis pertaining to some of the background material presented

in Chapter 2. Appendix B contains data for individual subjects
along with data relating to methodological development.

1. 4 S umia ry ,
The optimal control pilot/vehicle model used throughout this

study partitions the human operator's input/output behavior as

shown in the diagram of Figure 1-1. The operator obtains certain

task-relevant perceptual inputs, which are assumed to be degraded .

by time delay and "noise" to account for various information-

processing limitations of the human. The time delay reflects '"

neural conduction times and other sources of pure transport

delay. The obserration noise mathematically accounts for various

sources of response randomness and nonlinear response behavior

("pilot remnant"); for well-trained subjects provided with optimal

control and display environments, the observation noise identified

in simple laboratory tracking tasks appears to reflect a limita-

tion on the signal/noise ratio with which the operator can process

information.

4 % %
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NOISY, STATE OPERATORPERCEPTUAL INPUTS ESTIMATE RESPONE,

OPTIMAL OPTIMAL OPTIMAL CONTROL
EI OCTOR- ORDCSO. LAW

"INTERNAL MODEL" 3 4
OF TASK

ENVIRONMENT

Figure 1-1. Structure for Baseline Model of Operator Response
Strategy

The "optimal estimator" and "optimal predictor" elements of

the model represent the operator's (presumed) attempts to best

reconstruct the current "state" of the system he is monitoring.

An optimal decision or control law operates on this state estimate

to provide the appropriate response. In the case of a control

task, the optimal control law includes a first-order lag --

characterized by the "motor time constant" -- to reflect both

subjective and physiologic constraints on operator response

bandwidth.

Imbedded in the model structure of Figure 1-1 is an "internal

model" of the task environment which accounts for all the correla-

tions among system variables. This internal model is generally

configured to reflect faithfully the statistics of the task

environment, but this assumption must be challenged when we

consider tasks in which vehicle dynamics contain significant

lags, and/or subjects are incompletely trained.
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Figure 1-2 shows that a fixed set of independent, or "pilot-

related" model parameters can yield a good match to operator

frequency response (pilot gain, phase shift, and "remnant"

spectrum) for a significant range of laboratory tracking tasks.

If this range is extended by increasing system lags, however, we

begin to see a degradation in certain "pilot parameters" as

hown in Figure 1-3. Detailed analysis of these results suggests .%.

that changes i, the independent model parameters reflect

limitations on the operator's information-processing capabilities

that have not been heretofore explicitly identified -- such as

imperfections in the operator's internal model of the task

environment. Thus, the desired separation of operator- and

task-related model parameters has not been fully realized.

Future OCM development undertaken to account for learning behavior

should address this issue.

The effects of practice on average operator frequency response

are shown in Figure 1-4 for three different subject populations,

operating in different task environments. Similar practice trends

were found: performance early in practice, relative to near-

asymptotic performance, was characterized by lower pilot gain,

minimal differences in phase shift, and higher remnant. Model

analysis, the results of which are summarized in Figure 1-5,

showed that both the average noise/signal ratio and the motor

time constant decreased over the course of the training phase.
Practice-related changes were relatively greater and statistically

more significant for the noise parameter. These model results I..

were obtained without constraints on the allowable changes in

model parameters.
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a) Stable Plant, Fixed Base b) Stable Plant, Moving Base
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Figure 1-5. Effects of Practice on Independent Model Parameters

This data base was subsequently reanalyzed, this time with

constraints imposed to reflect certain hypotheses concerning the

process of skill acquisition. The goal here was to characterize

practice effects in a manner that was parsimonious and yet

applicable to a predictive model for learning.

We tested, individually, the hypotheses that practice

effects could be accounted for (1) solely by a reduction in

observation noise/signal ratio, (2) solely by an improving

ability to utilize rate cues, (3) solely by an improving internal

model of the tracking input, and (4) by a combined reduction in

noise/signal ratio and improved internal tracking-input model.
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Figure 1-6 shows that we can reject simple hypotheses

concerning use of rate information and internal model changes,

at least as they apply to the data base explored in this study.

The observation noise hypotheses provide the best simple
explanation for practice effects, and a somewhat closer match is

obtained if we consider the combined effects of changes in observa-

tion niose and internal model.

Because of the substantial mathematical development that

would have been required, it was beyond the scope of this study

to explore hypotheses concerning practice-related changes in the

operator's internal model of the simulated vehicle dynamics, at

least within the framework of the OCM. Instead, a simplified

analysis was conducted to demonstrate that, were such a model

development to be undertaken, it could be expected to yield

reasonable results.

A frequency-response analysis was performed to explore the
expected relationship between the operator's internal plant model

and certain aspects of the task environment: specifically, (1) the
availability of rate and/or acceleration cues, and (2) the

complexity of the plant dynamics. The qualitative results obtained 4.

in this analysis supported the following explanations for some of

the data trends shown in this and previous studies:

1. The lower observation noise and motor time constant parameters
found for whole-body motion cueing (Figure 1-5) are due to the

more accurate internal plant model attainable in this cueing

environment.
2. Learning is more rapid in a motion-base environment because

the operator is more readily able to determine the correct

order of the plant dynamics.

3. The apparent degradation in information-processing capabilities
associated with high-order plants (Figure 1-3) is, in part, a

reflection of a degraded internal model of the task environment.
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The results of this suggest that we consider modifying the

0CM structure as shown in Figure 1-7. The structure is similar

to that of the baseline model shown in Figure 1-1, with the

addition of a fourth adaptive element -- the "optimal identifier".

As the name implies, this model element would mimic the way in

which the human operator identifies plant and input dynamics, and

it would use this information to properly configure the remaining

adaptive model elements. A considerable body of literature in

the areas of identification theory and adaptive control theory

could be drawn upon to aid such an undertaking. If properly

formulated, the restructured 0CM should be able to address issues

.3'.%-

not only of operator skill development, but also of performance

difficulties (such as PiO's) that arise when substantial lags

and delays are introduced into the system.

PERCEPTUAL SAEOPERATOR X

OPTIMALL OPTIMAL CONTROL
ESTIMATOR PREDICTOR OR DECISON LAW -

OPTIMAL
SYSTEM

IDENTIFIERA

Figure 1-7. Proposed Structure for Model of Operator Response
Strategy
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2. BACKGROUND

Considerable effort has been devoted to understanding human

learning phenomena, and to developing models for human performance

in continuous control tasks, but very little work has been done in

developing quantitative models for how the operator learns

the appropriate control and estimation strategies. Furthermore,

what work has been done does not lend itself readily to complex

multi-input, multi-output tasks, nor does it extend to the kinds

of monitoring and decision tasks associated with aircraft flight

management.

This chapter provides the following background: (1) a review

of some important concepts related to skill development; (2) a

brief description of the optimal-control pilot model including

techniques for identifying, from experimental data, model parameters

associated with human information-processing limitations; and

(3) a review of relevant experimental and analytical results, in

which we demonstrate what appears to be an interaction between

the parameters of the control task and the quality of the operator's

internal model of the task environment.

2.1 Skill Acquisition

Before discussing general theories of human operator skill

acquisition we must first consider some distinctions that enter

into the assessment of skilled performance. Specifically, we :

consider the differences between (a) adaptation and learning,

(b) performance and learning, and (c) level of skill attainable

and rate of skill acquisition.

13 '

V % * - ...-......I v c %* **I,* N. .- %. -6 % % %



2 1. 1 Concepts

Adaptation vs. Learning

If an automobile operator owns both a stick-shift and an

automatic-shift vehicle, he is equally capable of operating either

one and we say the operator adapts his behavior to the vehicle

currently being operated. However, if the operator owns only an

automatic shift vehicle and rents a manual shift vehicle, a

period of learning is required to modify the pre-existing behaviors

to meet the requirements of shift and clutch operation. Following

this period of learning, the operator can call up the relevant

behaviors on demand. Thus we define adaptation in this context

as the calling up of previously-learned behaviors suitable to the

circumstances and context of concern. Learning, on the other

hand, is the acquisition of these desirable behaviors on the basis

of practice or repeated experience. ,,.

Learning, rather than adaptation, is the focus of the work

described in this report.

Performance vs. Learning Effects

Suppose we wish to evaluate the usefulness for learning of

a new display or of the introduction of motion in the training

simulator. We test two groups of pilots -- one with the old display

(no motion), and one with the new (with motion). While we may

observe improved performance in the test condition, we cannot

conclude that greater learning has taken place without examining

performance in a transfer condition that is representative of the

conditions in which the learned skills must be used. The test

condition may produce a performance effect but no learning.

Similarly, a particular training condition may actually produce

worse performance but contribute importantly to more effective

performance upon transfer to the desired end conditions. Thus,

only a carefully designed transfer experiment will distinguish

between performance and learning effects. %
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p Attainable Skill vs. Rate of Skill Acquisition

The effectiveness of training systems (with regard to skill

development) can be evaluated in terms of (1) the asymptotic

level of skill that can be acquired, given sufficient exposure

to the task, and (2) the rate at which skill is acquired. Although

one might expect that a training environment which maximizes the

quality of overall system performance also maximizes learning

rates, one cannot be guaranteed a positive correlation between

learning rate and asymptotic skill level.

In summary, the interaction between informational cues,

asymptotic skill level, and learning rate is an issue of practical

importance, and is one that must be addressed by models that are

developed to predict learning behavior.

2.1.2 Some Theories of Learning

The psychological literature is rife with theories of learning,

many of which purport to apply to perceptual-motor skill learning.

Few of these theories provide a suitable foundation for

quantitative models for tasks related to flight management.

Habit-strength theories fail to address what is actually

learned, dealinq only with the successive build up

of performance ouality (Halcart and Bower. 1966).

Skinnerian or shaping theories suggest that improvement takes place

in small, incremental units and depend on temporally associated

rewards, but this can hardly be considered a descriptive theory.

Stimulus-sampling or cue-selection theories in the S-R tradition

have been developed to a quantitative level, and at least for

verbal learning they attempt to predict more than just the shape

of a learning curve; but in the skill context they are not specific S.

with respect to the characteristics of skill that are acquired

.4.•
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(Restle and Greeno, 1970). Crossman (1959) came the closest when

he suggested that the operator samples a set of "methods" for

accomplishing a task and on the basis of some unspecified

evaluation criterion -- such as efficiency or effort -- selects

out those methods or strategies that are more successful and

efficient. However, Crossman was attempting only to describe

the characteristics of the learning curve and not specific

characteristics of skill acquisition.

Some attempts have been made at developing empirical models

for control-strategy learning in terms of practice-related

changes in performance metrics. Pew and Rupp (1971) attempted

to measure stages of progression in terms of the cross-over model.

They found systematic differences in the changes in these

parameters among children of different ages and, in an unpublished

study, Pew and Thomas mapped the coordinate changes in qain and

time delay as a function of practice and then introduced a time-

sharing task to see whether decrements in performance could be

described reasonably as regressions along the same path in the

gain-time delay space. Although there were rather large

individual differences in the acquisition map for different

subjects, it seemed clear that performance decrements associated

with time-sharing were not simply regressions along the same path.

Smiley, Reid, and Fraser (1978) measured operator describing

functions of novice automobile drivers during various stages of

practice on an instrumented car. They found practice-related

changes in both amplitude ratio and phase shift, which they

interpreted as changes in the way the drivers were using the

lateral position cue for steering control. V

Sw A few theoretical models, largely qualitative, have been

proposed for control-strategy development. Kelley (1968) has

formulated an extensive theory of performance and skill acquisition

16
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that builds on the basic concept that learning consists of the

acquisition and refinement of an internal model that defines

control strategy and relates it to his model of the environment

in which the operator is controlling. This environment includes

the characteristics of the controlled element as well as the

initial conditions.

More recently, theories of skilled performance have intro-

duced the concept of a schema (Pew, 1974; Schmidt, 1975 and 1976),

a generalized standard of performance from which may be extracted

a particular instance for execution as a motor program for any

given set of initial conditions. The idea of a schema is largely

compatible with the notion of a general form of internal model.

Expanding on the notions of schemata, Rumelhart and Norman

(1976) propose three modes of learning: (1) the acquisition of

new data, using existing schemata to organize the new information;
(2) "tuning" the parameters of existing schemata to better fit

the data; and (3) restructuring, whereby new schemata are developed .

when existing memory structures are inadequate to account for new

knowledge. No mechanisms are proposed for effecting these

changes, however.

Another conceptual framework for control-strategy development --

which incorporates some of the notions expressed above -- is the

"Sensory Organization of Perception" proposed by McRuer and

colleagues (Krendel and McRuer, 1960; McRuer and Jex, 1967).

According to this theory, control-strategy development is assumed

to undergo three stages: (1) development of "compensatory"

skills, in which appropriate feedback laws are established for

stabilization and control, (2) development of "pursuit" skills,
in which sufficient knowledge is gained to allow application of

a partial feedforward strategy, and (3) a "precognitive mode" in

'7
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which the pilot is able to take full advantage of any predictability

"" inherent in the external inputs and can act in a generally "open-

loop" fashion.

A more specific hypothesis has been proposed by Fuchs (1962)

in which the operator is assumed to place increasing emphasis on

velocity and acceleration cues as skill improves. Although this

hypothesis has intuitive appeal, it is not well supported by

Fuchs' own work, nor is it supported by the results presented

later in this report.

A scheme for both modeling and assessing operator control

behavior, implemented by Greene et al (1980), builds upon the

notion of internal modeling and attempts to account for learning

by building up a representation of plant dynamics through

experience. "Knowledge" is represented by a matrix of learned

relationships between tracking error and control response. While

this model has been able to replicate human operator behavior in

a pursuit tracking task using proportional dynamics, it would

"'. appear to suffer severely from the "curse of dimensionality" with

respect to modeling multi-input, multi-output high-order systems.

2.2 The Optimal Control Model

The reader is assumed to be generally familiar with the

optimal-control model (OCM) for pilot/vehicle systems. This model

has been used in numerous studies performed for AFAMRL by BBN

(Levison, Baron, and Junker, 1976; Levison and Junker, 1977, 1978;

Levison and Zacharias, 1981). For the reader's convenience we

first review the pilot-centered components of the model and then

summarize the procedure for identifying independent (i.e., pilot-
related) model parameters from experimental data.

18
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2.2.1 Model eci.Q,,,ion .

We consider two categories of pilot-related model elements:

parameters that reflect the human's perceptual-motor

(information-processing) limitations, and elements related to the
operator's adaptive response strategy.

The following parameters reflect perceptual-motor

limitations:

1. Qbseat.ion noise. Each perceptual variable utilized -'

by the operator is assumed to be perturbed by a white
Gaussian noise process that is linearly uncorrelated
with other pilot-related or external noise sources. In
certain idealized laboratory tracking situations, the
variance of the observation noise tends to scale with
the variance of the corresponding display variable
(Baron and Levison, 1980), in which case we may
characterize this limitation by an observation
noise/signal ratio. A more complex submodel for
observation noise may be considered to account for
limitations such as perceptual thresholds (Baron and
Levison, 1975,1977) and attention-sharing (Levison,
Elkind and Ward, 1971; Levison, 1979). In general, the
observation noise accounts for most of the operator's
*remnant" -- the portion of the control input that is not
linearly correlated with external inputs. For trained
subjects, remnant may reasonably be attributed to
fundamental information-processing limitations as
suggested above (provided the system to be controlled
is linear -- an underlying assumption of the OCM). For
untrained subjects, observation noise may reflect
within-trial variations in the linear aspect of the
operator's response strategy.

A',..
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2. Tim Deay. A single (scalar) time delay is added to
each display variable to account for the various
sources of delay associated with information
acquisition, transformation, and response execution.

3. Motor Ti=e Constant. The operator's control response
is assumed to be smoothed by a filter that accounts for
an operator bandwidth constraint. In the model, this
constraint arises directly as a result of a penalty on
control rate introduced into the performance criterion.
This constraint may mimic actual physiological
constraints of the neuromotor system, or it may reflect
subjective limitations imposed by the operator. The
time constant of this first-order filter is called the
"motor time constant".

4. Motor Noise. Just as an observation noise is
postulated to account for perceptual and central
processing inadequacies, a motor noise is introduced to
account for an inability to generate noise-free control
actions. In many applications this noise level is
insignificant in comparison to the observation noise, v
but where very precise control is important to the
conditions being analyzed, motor noise can assume
greater significance in the model. Early
implementations of the model treated this noise as a
disturbance added to the control response commanded by
the operator. In current OCM usage, motor noise is
generally added to commanded control rai in order to
provide a better match to low-frequency response
behavior to the pilot describing function at low
frequencies (Levison, Baron, and Junker, 1976).

5. ct tions. Except for the cost weighting on
control rate, which we relate to a motor time constant
as discussed above, the coefficients of the quadratic
performance index are generally considered as part of
the task description, rather than as human operator
limitations. Nevertheless, the operator can only
minimize what he prceives to be the performance index.
To the extent this perception differs from the "true"
performance index (as defined by the experimenter), the

20
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performance index must be considered as an operator-
related parameter. One might expect such differences
to occur early in training.

The adaptive portion of the operator's response is

represented collectively by three elements of the human operator

model: The Kalman estimator, optimal predictor, and optimal

control law. The function of the Kalman estimator and predictor

is to generate the best estimate of the current state of system
variables, based on the noisy, delayed perceptual information
available. It is assumed in these elements that the operator has

both an internal model of the dynamics of the system being
controlled, and a representation of the statistics of the

disturbances driving the system.

Given the best estimate of the current system state, a set

of control gains or weighting factors are assigned to the

elements of the estimated state, in order to produce control
actions that will minimize the defined performance criterion. As

might be expected, the particular choice of the performance

criterion determines the weighting factors, and thus the

effective control law gains.
%

2.2.2 Identification of Pilot-Related 2

An automated gradient search scheme has been developed by

Lancraft and Kleinman (1979), and subsequently modified by
Levison (1981a, 1981b), to identify the pilot-related model
parameters listed above. Parameter values are found that provide

a least-squared error joint match to experimental variance, gain,

phase, and remnant measurements. Identification is generally
performed under the assumption that the test subject has the

correct internal model of the task environment.

21
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As currently implemented, the parameter identification
scheme places no constraints (other than non-negativity) on the

identified values. Now, if all independent model parameters are
allowed to vary freely to obtain a best match to a given 

data 1

set, all parameters will generally vary from one data set to the
next. In order to interpret such results, we need some method
for determining which parameter changes are "significant"; that
is, which parameter changes are necessary to account for changes
in operator response behavior due to learning or to some change
in experimental conditions. Relative magnitudes of various

parameter changes are not reliable indicators of significance: a
large change in the value of a particular model parameter may
simply reflect insensitivity of the scalar modeling error to the
value of that parameter.

A cross-comparison method has been developed by Levison

(1981a, 1981b) to provide a qualitative significance test on

parameter differences obtained from modeling the results of two
experimental conditions. This method employs a numeric, non- VV,
analytic sensitivity test as described below.

Assume that we wish to analyze two data sets, corresponding
to, say, the "baseline" and "test" experimental conditions;
specifically, we wish to determine whether or not different
parameter values are required to match these data. The null
hypothesis, then, is that a single set of parameter values yields
a near-optimal match to the "baseline" and "test" data.

To test the null hypothesis, we first identify three sets of
pilot parameters using the gradient search scheme: (1) the set -
that best matches the baseline data, (2) the set that best

matches the test data, and (3) the set that provides the best

22
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joint match to the baseline and test data. For convenience, we

shall refer to the parameters identified in step 3 as the

"average parameter set".

We next compute the following four matching errors:

J(B,B) = matching error obtained from baseline data, using
parameters identified from baseline data (i.e.,
best match to baseline data).

J(BA) = matching error obtained from baseline data, using
average parameter set.

J(TT) = best match to test data.

J(T,A) = matching error obtained from test data, using %

average parameter set.

Finally, we compute the following "matching error ratios":

MER(B) = J(B,A)/J(B,B), MER(T) = J(T,A)/J(T,T) and, if we wish to

reduce the results to a single number, the average of these two

error ratios.

In a qualitative sense, the greater the matching error

ratios, the more significant are the differences between the

parameters identified for the baseline and test conditions. For

example, if both matching error ratios are unity (the theoretical

minimum), then the null hypothesis is supported: there exists a

single set of parameters that provides an optimal match to both

data sets. Any differences between the baseline and test

parameter sets must be considered insignificant and can be

attributed to imprecision of the identification procedure.

Conversely, if one or both matching errors ratios are

substantially greater than unity, one must reject the null

hypothesis and consider the differences in model parameters to be

"significant"; i.e., to represent true differences in operator

response behavior.

23 J
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Interpretation of significant task-related differences in

pilot parameters is contingent upon assumptions concerning the

operator's internal model of the task. If we can be assured that

the internal model is correct, parameter differences may be

justifiably related to specific changes in operator response

capabilities. For example, both theoretical and experimental

results have led to the association of the observation

noise/signal ratio to attention-sharing penalties among

concurrent multiple tasks (Levison, Elkind and Ward, 1971;

Levison, 1979). Observation noise, as one might expect, has also

been found to reflect visual resolution limitations in non-ideal

display environments (Levison, 1971). Similarly, increased motor a-

noise has been found to account, in part, for tracking

performance degradation caused by whole-body, high-frequency

vibration (Levison, 1978). In these studies, performed with

subjects who were well-trained on wide-band (i.e., low-order)

control systems, the assumption of a near-perfect internal model

was reasonable.

If the subject's internal model differs substantially from a

true characterization of the task environment, parameter changes

identified by the above procedure may be misleading. For

example, suppose a test subject changes his internal model from

one test condition to the next, but maintains the same inherent

response capabilities in terms of motor time constant,

observation noise, etc. By modeling both sets of data with the -

assumption of an invariant (and correct) internal model,

performance differences will, of necessity, be revealed as

changes in one or more 'pilot" parameters.

Now, we can expect certain situations in which the subject

is not likely to have a near-perfect internal model; e.g., tasks

24
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requiring control of high-order systems with limited

informational cuing, and subjects in early stages of training.

The OCM has accordingly been modified to account for various

imperfections in the operator's internal model (Levison, Baron,

and Junker, 1976; Baron and Berliner, 1977). A theory has not

yet been developed, however, to predict the nature or extent of

internal modeling imperfections.

2.3 Some Evidence for Imperfect Internal Modeling

Figure 2-1 shows that a fixed set of pilot-related model

parameters can yield a good qualitative match to frequency response

measures (pilot gain, phase, and remnant) for a significant range

of laboratory tracking dynamics. (The match can be improved, of

course, by "tuning" the parameters for each condition.)

If we consider a wider range of tasks, especially tasks

employing dynamics of higher order and/or greater delay, we begin

to see a degradation in certain "pilot parameters" with increasing

task difficulty. As discussed later, these results may reflect

limitations on the operator's ability to construct an accurate

internal model of the task environment.

Manual tracking data obtained in previous studies were

re-analyzed using the parameter identification scheme described

above. The results of this analysis, some of which have been

reported previously by Levison (1981b), are summarized here.

Four classes of model parameters were identified from the

tracking data: observation noise/signal ratios, motor noise/signal

ratios, time delay, and cost of control rate. Nomenclature and

definitions for these parameters are as follows:
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Pe = Observation noise/signal ratio relevant to tracking error,
in dB. This quantity is defined as the ratio of the
observation noise covariance associated with perception of
tracking error, normalized with respect to tracking error
variance. (Tracking error was a zero-mean process.)

P= Observation noise/signal ratio relevant to perception of
tracking error rate.

Pm = Pseudo-motor noise/signal ratio, in dB, defined as the ratio
of pseudo motor noise covariance normalized with respect
to the variance of the commanded control rate. The prefix
pseudo" signifies a noise process that only influences the

pilot's response strategy; it does not reflect an actual
noise process injected into the system. See Levison, Baron
and Junker (1976) for a detailed discussion of the motor
noise aspect of the OCM.

Td Time delay, in seconds.

G = Cost coefficient associated with control-rate variance.
(The operator is assumed to adopt a response strategy that -

minimizes a weighted sum of tracking error and control-rate
variances.)

Tm = Motor time constant, in seconds. This parameter is not
directly identified in the search procedure but is a derived
parameter uniquely determined from the controlled-element
dynamics and the identified G coefficient. Because this
parameter is considerably less task-dependent than the
weighting coefficient G, it is usually reported in place of
G as a "pilot-related" parameter. p

Parameter values for seven single-axis tracking tasks are

shown in Table 2-1. The plant dynamics used in these experiments

may be described as follows:

Configuration 1: Proportional control. (The pole at 200

rad/sec was introduced primarily to facilitate model analysis.)

Configuration 2: Rate control.

Configuration 3: Rate control plus a 2 rad/sec 2nd-order

Butterworth filter.

Configuration 4: Rate control plus a 1 rad/sec 2nd-order

Butterworth filter.

%%

44



TABLE 2-1. PILOT-RELATED MODEL PARAMETERS, FIXED-BASE TRACKING,
TRAINED SUBJECTS

Config. Pilot-Related Parameters

. Index Plant Dynamics Ref. Pe PT Td m G 

200
1 K S+-0 1 -21.0 -19.5 0.17 0.082 .40

2 K/s 2 -23.6 -18.2 0.15 0.073 .0092 P1

3* K 2 2 -18.5 -17.6 0.26 0.14 .0011

:s s2 2.s + 22

4* K 1 2 -22.4 -13.3 0.35 0.18 .0011
s S2+/2s + 1

"" K 5 19
5 .. 3 -22.1 -16.6 0.19 0.13 --

s s+5 s+19

2,, 19 -06 s
6 K/S2 " 1 • e O 4 - 4.6 -21.0 0.21 0.11 .027

S+19 ,-_

7** (approximate 2nd-order) 5 -10 -20 0.20 0.13 --

Pe = displacement observation noise, dB

P6 = rate observation noise, dB

Td = time delay, seconds

TM = motor time constant, seconds

2
G = relative cost of control 5ate, relating (lbs/sec)

control rate to (arc-deg) error.

*Observation noise of about -19dB associated with perception
error acceleration.

**Approximate pilot parameters determined from manual search.

References: (1) Levison (1981b); (2) Levison (1971); (3) Levison,
Lancraft, and Junker (1979); (4) Levison (1980); (5) Levison,
Baron, and Junker (1976)
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Configuration 5: Approximate roll-axis fighter response

characteristics including simulator lag.

Configuration 6: Acceleration control plus simulator lag

and delay.

Configuration 7: High-order plant having approximate

acceleration control in the mid frequency range.22

The K, K/s, and K/s conditions represented in Figure 2-1

correspond to configurations 1, 2, and 6, respectively.

The principal model results contained in Table 2-1 are

presented graphically in Figure 2-2, where we see a trend toward

larger motor time constant and larger time delay with increasing

effective vehicle phase lag (computed at 4 rad/sec). For the most

part, these task-related differences in model parameters are

"significant" as defined above: they reflect differences in

operator response behavior, rather than imprecisions in the

identification procedure.

Now, since all subject populations were well trained, and

since different groups of subjects tend to perform similarly on

a given task when well trained, it is unlikely that these

differences in pilot-related model parameters reflect different

inherent information-processing capabilities among the experimental

subject populations. Rather, the following hypotheses are more

.o, likely to explain the apparent trends:

1. Subjects were motivated differently by the different task

configurations to perform to capacity.

* 2. Improper constraints have been imposed when applying the

OCM to this data base, causing variations in what would

otherwise be relatively invariant parameters.
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*" Differences in observation noise (Table 2-1) can be

attributed to motivational factors. For cases showing a large

observation niose associated with error displacement, model

analysis reveals that rms tracking error is substantially less

sensitive to noise on error displacement than to noise on error

-. rate. Conversely, the sensitivities are more nearly equal in

cases where similar observation noises are identified for the
two perceptual quantities. Thus, the observation noise trends

are consistent with the hypothesis that the pilots are attemptinq,

in part, to minimize perceptual workload by attending only as

required to the available perceptual inputs (Levison, 1979).

Time delay differences, however, cannot be attributed to

motivational factors. For example, adding a second-order 1 rad/- ~ecButterworth fle oKscue
secfilter to K/s dynamics caused the best-fitting

time delay parameter to increase from about 0.15 seconds

(Configuration 2) to almost 0.35 seconds (Confiquration 4).

This difference was found to be significant using the qualitative

test described abhve, and a sensitivity analysis showed that

predicted tracking error variance was highly sensitive (about a

<N' factor of 2) to time-delay differences of this size. (See
Section A.1, Appendix A).

These results indicate that (i) the subjects were capable
of performing with a time delay parameter of under 0.2 seconds

and (2), in the case where they exhibited a much larger delay,

they would have been able to perceive the performance benefit of

reducing the delay to 0.2 seconds or less. Therefore, we must

consider the possibility that the larger delay reflects a limitation

on operator performance not directly reflected in the model

parameterization -- a limitation not present (or, at least,

substantially less important) in the wider-band tracking tasks.
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One hypothesis is that the accuracy and/or precision of the

operator's internal model degrades as complexity of the controlled-

element increases, and that this information-processing deficit

is revealed (in the case cited here) as a change in time delay.

A number of hypotheses concerning the apparent task-related

changes in the motor time constant were explored: (1) that the

subjects select a motor time constant to reflect a consistent

tradeoff between rms tracking error and rms control activity;

(2) that the task-varying time constant reflects a consistent

subjective performance penalty on the generation of control

activity rather than a response bandwidth limitation, and (3)

that the motor time constant reflects a response bandwidth

limitation combined with a subjective penalty on control activity.

A sensitivity analysis reported by Levison (1981b) refutes

the first hypothesis. The error/control tradeoffs identified

for the various tasks varied over a wide range. Thus, we cannot

relate differences in motor time constant to differences in the

sensitivity of rms error to rms control rate.

Inspection of the right-hand column of Table 2-1 refutes the

second hypothesis. Relative cost of control rate varies over two N.

orders of magnitude among the various tasks for which meaningful

comparisons can be drawn. Clearly, motor time constant is a more

consistent descriptor of pilot performance limitations than is

relative cost of control rate.

To test the third hypothesis of a combined bandwidth limita-

tion and control-force penalty, we assumed the following submodel

for the cost coefficient associated with control-rate variance:

G =G + G0 p
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where G is the actual coefficient, G is the component that

corresponds to some minimum motor time constant Tm0 and G is

the component relating to the subjective penalty on physical

activity (i.e., control-rate variances.) The assumed total

performance index, or cost, was

2 2
-L- .J 2 + Go "

e u

i.e., a weighted sum of error and control-rate variances.

Now, for the third hypothesis to be accepted, we need to

find consistent (i.e., nearly invariant) values for Tm and G

that replicate the task-related variation in T shown in
m

Table 2-1. The analysis reported in Section A.1 of the Appendix

to this report yields mixed results. If we consider the data

obtained from configurations 2, 3, and 4, we can find fixed values

for Tm and G that yield motor time constants not significantly
o p

different from those shown in the Table. On the other hand, if

we consider the database provided jointly by Configurations 2, 4,

and 6, fixing Tm0 and G significantly degrades the model match,~P
relative to the match that can be obtained if these parameters

are allowed to vary across tasks.

It is possible that some alternative submodel structure would

satisfactorily explain the variations in motor time constant

A (e.g., a penalty on control force instead of or in addition to,

a penalty on rate-of-change of control force). An exhaustive

search of such model structures was beyond the scope of this

effort.

In conclusion, the analysis reported here is at least

suggestive of the notion that task-related variations in

identified "pilot parameters" of the OCM reflect some underlying

limitation on human information-processing capabilities that
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* is not directly represented in the OCM as heretofore applied to

tracking tasks. One obvious limitation to consider is the

accuracy and precision of the operator's internal model. In

Chapter 5 of this report we present a simplified analysis which

supports the intuitive notion that the operator's internal

model degrades as task complexity increases.
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3. EFFECTS OF PRACTICE ON PILOT RESPONSE BEHAVIOR

In this section we review the effects of practice on manual.

'M control response behavior for three subject populations.

Performance is quantified in terms of standard control-system

performance metrics as well as "pilot-related" model parameters.

3.1 Review of the Data Base _

The data base analyzed in this study was provided by two

preceding experimental studies. The study referred to as the

"stable plant" study was conducted primarily to explore the

effects on pilot performance of a delay between roll-axis platform

motion and visual cues (Levison, Lancraft and Junker, 1971),

and employed simulated vehicle dynamics representative of a

high-performance figher in roll. The study referred to as the
"unstable plant" study was conducted as part of a research

project to develop a tracking task for which performance would

be highly sensitive to task- and environment-related stress

(Zacharias and Levison, 1979), and employed plant dynamics having

a divergence time constant of 0.5 seconds. The latter study was

conducted fixed-base. A

All subject populations were first given exposure to the

tracking dynamics, without external disturbances, to allow

subjects to develop an appropriate control strategy for stabiliz-

ing the plant dynamics. This initial exposure typically lasted

a few minutes. A considerable period of practice followed,

spread out over a number of days, in which the subjects attempted

to minimize the effects of an external forcing function on mean-

squared tracking error. The earliest data available for analysis

of the type reported here, then, occurred early in the post-

initialization phase; they do not represent the subjects' first

exposure to the tracking dynamics.
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The stable-plant tracking task consisted of maintaining a

simulated figher-like aircraft wings level in the presence of

random turbulence. Separate populations of 4-5 subjects were

given initial training on the various conditions explored in this

study. "Learning curves" are shown in Figure 3-1 for the subject

populations trained (a) fixed base and (b) moving-base with

synchronous visual and motion cueing. Averaged mean-squared

tracking error is plotted as a function of practice session,

where each session consisted of four experimental trials of

approximately three minutes each.

Figure 3-1 shows that both the fixed- and moving-base subject

populations improved their tracking performance scores with

continued practice, with the latter subject group apparently

reaching an asymptotic performance level during the course of

training. The moving-base population not only achieved lower

error scores than the fixed-base population, but exponential fits

to the learning curves suggest that the moving-base population

reached asymptote with fewer practice sessions (Levison, Lancraft

and Junker).

The unstable-plant study required compensatory tracking

using first-order unstable dynamics having a critical

frequency of 2 rad/sec. The external disturbance consisted of

a simulated first-order noise process injected in parallel with

the subject's control input.

Each subject successfully completed 48 training runs.

Because of initial difficulty with the task, subjects occasionally

tracked an input disturbance RMS level of 0.5 cm, rather than

the nominal 1.0 cm. To provide a fair base of comparison with

scores obtained under nominal conditions, scores obtained with a

0.5 cm RMS input were doubled under the assumption of approximate

operator linearity. A total of 24 such run scores were adjusted,

out of a total number of 288 runs completed by the six-subject

population.

.%4
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Figure 3-2 shows tracking score dependence on run number,

averaged across the six subjects. Population means and standard

deviations are indicated by the dots and bars, respectively.

Although 48 runs per subject were conducted, the figure shows

a substantial reduction in tracking score by about the 15th trial; -i

by the 30th trial, tracking score was within 20% for the scores

obtained at the end of training.

'. "

3.2 Effects of Practice on Operator Frequency Response 4,.

We present here a summary of the effects of practice on

operator frequency response measures (gain and phase shift, and

remnant). Data averaged across subjects are shown, along with

selected data from individual subjects. Data for all subjects

participating in the stable-plant and unstable-plant studies

are presented individually in Appendix B.

The effects of practice on average frequency response are

shown in Figure 3-3 for the three subject populations considered

in this analysis: (a) stable plant, static group, (b) stable

plant, motion group, and (c) unstable plant. Two stages of

practice are reflected here and in the analysis to follow: very

early in the training phase ("early"), and near-asymptotic
performance at the conclusion of the training phase ("late").

In these figures (and in other frequency-response plots appearing

in this report), 0 dB gain represents 1 unit of control response

per unit of tracking error, and 0 dB "remnant" represents unit

control variance per rad/sec for the portion of the operator's

control response not linearly correlated with the external

forcing function.*

For the stable-plant study, error was measured in deqrees roll
angle and control was in pounds force; for the unstable-plant
study, error was in cm display deflection, and control was
calibrated in terms of equivalent cm of steady-state error
deflection.

I.P.

'37

I~; ~ * -V- , V .°•



a) Stable Plant, Fixed Base b) Stable Plant, Moving Base
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Figure 3-3. Effects of Practice on Average Pilot Frequency
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Although the sum-of-sines forcing functions contained

components ranging from about 0.2 to 32 rad/sec, siqnal/noise

limitations due to operator remnant limited the range of valid

describing function measurements. (See Levison, 1971, for a ..

discussion of analysis procedures.) Thus, the range over which

gain and phase measurements are plotted in Figure 3-3 are different

for the different tracking tasks and different states of practice.

The three subject populations exhibited similar practice

trends. Performance early in practice, relative to near-asymptotic

performance, was characterized by lower pilot gain, minimal F

differences in phase shift, and higher remnant.

Five out of the six subjects participating in the unstable-

plant study yielded frequency response measures very similar to

the average response curves shown in Figure 3-3c. Thus, the

average response may be considered typical of an individual

subject's response, and model analysis of the population-average

response is justified for that data base.

Intersubject differences in the practice trends were more

substantial for the stable-plant study, and these results were

analyzed on an individual as well as a group basis. Figure 3-4

compares frequency-response measures obtained from two subjects

in the fixed-base group and two subjects in the moving-base group

of the stable-plant study. In both cases, the subject pairs were .

selected to maximize intersubject differences.

The remnant spectrum showed the greatest variability with

respect to practice effects. Two subjects in Figure 3-4 show that

the remnant spectrum obtained early in practice was greater at

low frequencies, and lower at high frequencies, than the correspond-

ing remnant curves obtained later in the training phase. The

remaining two subjects showed larger low-frequency remnant early

in training, but negligible practice effects on high-frequency
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remnant. As discussed below, model analysis suggests that these

different trends reflect differing practice-related effects on

operator response bandwidth.

3.3 Effects of Practice on Independent Model Parameters

3.3.1 Analysis procedures

The quasi-Newton gradient search procedure (Lancraft and

Kleinman, 1979; Levison, 1981a,b) was used to identify the

independent -- or "pilot-related" -- parameters of the 0CM from

data obtained early and late in the training phase. Parameters

identified were the same as those defined in Section 2.3; in

addition, a third observation noise/signal ratio P.., associated

with perception of error acceleration, was identified for the

motion-base data.

Pilot parameters were identified for individual subjects in

two ways. First, the full set of parameters was identified; this

procedure is termed the "unconstrained" search procedure. Next,

parameters were identified again with the following constraints

placed on the search scheme: (a) time delay fixed at an appropriate

value for all subjects, both practice conditions; (b) motor noise

ratio fixed at the average value for early and late practice for

a given subject, and (c) observation noise/signal ratios constrained

to be the same for all observation noise parameters identified

(e.g., Pe P. for a given subject at a aiven level of practice).
e

This procedure, which is termed the "constrained" search procedure,

considers only the overall observation noise/signal ratio and the
motor time constant to be influenced by training.

The constrained search procedure is justified because, for

the data base considered in this study, time delay, motor noise,

and differences among observational noise variables were not
significantly influenced by practice. (One should not conclude

that these model parameters were redundant or nonidentifiable;

rather, they were not indicators of the learning process.) As

the reader will see, results are more readily digested if the

search procedure is narrowed down to the important quantities.
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Two techniques were employed to determine the significance

of practice-related parameter differences: (1) the qualitative

cross-comparison scheme described in Section 2.2.2, and (2) paired-

difference t-tests performed on model parameters. Application

of the t-test was the same as would be applied to the reduced

V. °'tracking data, except that the identified parameters served as

the "data". As a practical matter, this procedure was limited

to analysis of population means, with subject-paired early/late

differences used in the computation of the "t" statistic.*

3. 3.2 Principle Results

Analysis of population trends is provided in this Section.

V Parameters identified for individual subjects are presented in

Appendix B.

Table 3-1 shows the effects of practice on average pilot

parameters for the static (fixed base) and motion (moving base)

subject populations participating in the stable-plant study. The

reader will notice invariant values for motor noise and time delay

parameters for the "unconstrained" search performed for the motion

population (lower half of Table la). This constraint was imposed

after preliminary analysis with arn unconstrained procedure indicated

that (1) practice had no significant influence on these parameters,

and (2) numerical convergence was substantially improved from this

particular data set by imposition of these constraints.

The unconstrained and constrained search procedures revealed

similar trends for practice-sensitive model parameters. Both

* observation noise and motor time constant decreased with practice

for the two populations, with time constant differences being

,*. greater for the static group. Table 3-la (static group) shows

negligible changes in motor noise, an increase with practice in

the time delay, and apparently greater practice effects on position-

related noise as compared to rate-related noise. However, time

Significance testing for individual subjects would require
parameter identification for a number of individual trials per
subject, which would generally entail significant computational 'p
requirements.

•.9
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Table 3-1. Effects of Practice on Average Pilot Parameters,
Stable-Plant Study

a) Unconstrained Parameter Search
Parameter

Motion Practice
Condition State Statistic Pe Pe Pe Pm Td Tm

EARLY MEAN -10.5 -15.6 - -41.9 •187 .205
SD 3.1 1.9 - 11.1 .032 .084

STATIC
LATE MEAN -22.5 -18.7 - -40.6 .221 .135

SD 2.1 2.3 - 10.1 .044 .021

EARLY MEAN -13.4 -14.1 -19.5 -60.0 .200 .121
SD 8.1 2.4 2.6 - - .015

MOTION
LATE MEAN -32.4 -13.7 -24.9 -60.0 .200 .0995

SD 1.2 6.3 4.4 - - .0222

b) Constrained Parameter Search

Motion Practice PARAMETER

Condition State Statistic Pe = P6 Tm

EARLY MEAN -15.2 .204
SD 1.4 .083

STATIC
LATE MEAN -18.9 .135

SD 1.0 .022

EARLY MEAN -15.4 .124

SD 3.4 .015
MOTION

LATE MEAN -24.1 .0994
SD 0.5 .0222

Statistics for 5 subjects, static; 4 subjects,
motion; 2-4 trials/subject
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delay changes and differences between position and rate noise .3
were found to be largely insignificant, thereby justifying the

A. constrained search reflected in Table 3-lb. (The effects of

imposing these constraints on the matching error are tabulated

in Appendix B.)

Results of the significance test of practice-related

parameter differences are given in Table 3-2. The t-tests

indicated that only observation noise differences are significantly

influenced by practice; this was true for both the static and

motion groups. The qualitative cross-comparison test confirmed

this conclusion for the motion group. For the static group,

however, changes in motor time constant, but not observation

.2W ~ noise, were found to be significant.

The discrepant conclusions yielded by the two significance

testina methods may be due, in part, to appreciable subject-to-

subject differences. Figure 3-5, which shows parameters identified

for individual subjects, reveals an apparent negative correlation

between practice-related effects on observation noise and motor

time constant for the static group. That is, subjects exhibiting

relatively large changes in motor time constant tended to exhibit

relatively small changes in observation noise, and vice versa.

This finding suggests some sort of tradeoff between decrements in

motor time constant and decrements in observation noise in the

early stages of practice. Because the parameter differences shown

in Figure 3-5 were found to be largely significant (i.e., matching

error ratio greater than 2), this presumed tradeoff does not simply

reflect an insensitivity of the model-matching scheme. It is

possible that performance was, to some extent, insensitive to

. piloting strategy early in training, with a consequent increase in
inter-subject variability.
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Table 3-2. Significance Test of Practice-Related Parameter
Differences, Stable-Plant Study

~Parameter

Motion Search Test P m
Conditioni Procedure Procedure Pe Pe P6 Pm I Td Tm

I 1*
Unconstrained t-test * - N/A - -

STATIC Constrained t-test * N/A N/A N/A -

Constrained Qualitative - N/A N/A N/A *

Unconstrained t-test - - * - - -
MOTION Constrained t-test * N/A N/A -

Constrained Qualitative * N/A N/A -

N/A not applicable

- = not significant

• = alpha significance level 0.05 or less for the t-test,
matching error ratio greater than 2.0 for the
qualitative test.
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Figure 3-5. Effects of Practice on Pilot-Related Model
Parameters, Stable-Plant Study
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Results of the model analysis were more consistent for the

unstable-plant study. Table 3-3 shows that practice influenced

primarily the observation noise/signal ratio for the subjects

participating in this study. Both methods for determining signifi-

cance indicated that only the noise parameters were significantly

effected. On the average, motor time constants and observation

noise/signal ratios were lower than those obtained in the motion-

cue study, perhaps because of the more severe information-processing

requirements imposed by the unstable plant dynamics used in the
unstable plant study.
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Table 3-3. Effects of Practice-Related Model
Parameters, Unstable-Plant Study

a) Model Parameters

Practicing Parameter
State Statistic Pe Pe Pm Td TM

EARLY MEAN -18.0 -20.0 -44.2 .141 .105
SD 2.3 2.4 9.3 .032 .029

LATE MEAN -24.2 -22.2 -42.2 .135 .0809
SD 1.4 0.7 7.3 .013 .0145

EARLY MEAN* -19.5 .0863
-45.0 .135

LATE MEAN* -22.4 .0786

*Search performed under following constraints:
PYe = PY6, Pm = 045, Te = .135.

Statistics for 6 subjects, 2-4 trials/subject.

b) Significance Tests
Parameter

Analysis Procedures Pe I P6 Pm Td Tm .

Unconstrained search, "-. -
t-test

Constrained search, N/A N/A -

qualitative test

N/A = not applicable

- = not significant
* = alpha significance level .05 or less for the

t-test, matching error ratio greater than 2.0
for the qualitative test.

Statistics for 6 subjects, 2-4 trials/subject
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4. HYPOTHESIS TESTING

The model results presented in the previous section were

obtained without imposing pre-conceived notions as to what the

44 effects of practice might be. All pilot-related independent

model parameters were initially allowed to vary at will across

conditions; only after determining that certain parameters were

-. . insensitive to practice effects were constraints subsequently

imposed on the search procedure. In this initial analysis phase,
then, the OCM was used strictly as a diagnostic tool. As the

next step toward developing a predictive model for learning, the

data base was re-analyzed, this time with constraints imposed to

reflect various hypotheses concerning the process of skill

acquisition. The goal of this second analysis phase was to

characterize learning effects in a manner that was parsimonious

and yet applicable to a predictive model for learning.

We explore here various hypotheses concerning information-

processing deficits early in the training phase, relative to

information-processing capabilities after substantial practice.

Some of these hypotheses are suggested by the results presented

in the preceding chapter, others by existing theories of learning.

* Potential deficits are first explored individually, then in

combination. All model/data comparisons are with respect to

frequency-response data/averaged across subjects within a given

population (5 subjects for the static group, stable-plant study;

4 subjects for the motion group, stable-plant study/ and 6

subjects for the unstable-plant study).

One should keep in mind that the "early" practice data
reflect operator performance only after the operator has learned

to stabilize the plant and is able to track for a three- to four-

minute period. Therefore, performance early in training does not

ell 48
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necessarily reflect operator capabilities and strategies upon

first exposure to the tracking task. Although steady-state

data were generally obtainable after relatively brief exposures

to the task, one must consider the possibility that a substantial

amount of learning (especially regarding plant dynamics) occurred

between first exposure and the "early" practice results reported

here.

4.1 Increase in the Observation Noise/Signal Ratio
The analysis reported in the previous chapter suggests that

observation noise differences should account for much of the

practice effects. The following test was therefore performed:

(1) independent model parameters were initially set to the

values identified by the constrained-search procedure from the

late-practice data, and (2) the observation noise/signal ratio

was increased until the early-practice average MSE score was

matched to within 10%. A fixed noise/signal ratio was maintained

.4 for the position and rate components, and all other parameters

were kept fixed at the values appropriate for late practice.

The objective of this analysis, then, was to determine how well

practice effects could be accounted for by a change in a single

model parameter; specifically, observation noise/signal ratio.

The effects of changing the observation noise are shown in

Figure 4-1. In order that one may qualitatively judge the accuracy

of the model trends, average frequency-response experimental data

are shown for comparison.

As the reader will shortly see, this hypothesis provides the

* lbest simple explanation for observed performance trends. For all

• -three tracking tasks, predicted gain is decreased and predicted

remnant is increased.* Not all details of the early/late

Throughout this discussion, a comparison of early-practice
behavior to late-practice behavior is implied.
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differences are modeled, however. In particular, the model

predicts that remnant will be increased at all measurement

frequencies; the experimental data show that high-frequency

remnant was either unmodified or slightly decreased. Furthermore,

Figure 4-1c shows a greater effect on the high-frequency gain peak

than was observed. (Valid high-frequency describing function

estimates were not obtained for the stable-plant tracking tasks.)

There also seems to be a tendency for predicting too much phase

lag at mid-to-high frequencies.

4.2 Lack of Information on Error Derivatives

It has been suggested that an untrained operator makes

relatively little use of rate information provided by the velocity

of the error indicator, and that the reliance on this type of

information increases with continued practice (Fuchs, 1962). To

test the validity of this hypothesis, model parameters were initially

selected as in the previous test, and the "display vector" was

reduced to a single quantity: error displacement. Thus, rate cues

were eliminated from the analysis of the fixed-base tasks, and both

rate and acceleration cues were omitted from the analysis of the

moving-base task.

Figure 4-2 shows that this hypothesis produces some predicted

performance trends that are counter to experimental observations.
Although the effects of practice on low-frequency gain are matched

reasonably well, too much high-frequency phase lag is predicted,

and the predicted remnant trends are wrong. Specifically, this

hypothesis predicts that remnant will be increased largely at high

frequencies, whereas the data show the increase to be primarily at

low frequencies. Thus, the hypothesis of a specific deficiency

in extracting and utilizing velocity information early in practice

is not supported.
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4.3 Deficient Internal Model of the Tracking Input

Ac noted above, the "early" results presented here do not

represent the subjects' first exposure to the tracking tasks,

but rather the first available opportunity to obtain consistent

performance measures once the subjects have learned some rudimentary

strategy for stabilizing and controlling the vehicle. Consequently,

it is possible that a substantial portion of the learning taking

place during the practice intervals relevant to these data bases

was devoted to learning the statistics of the external inputs.

This hypothesis is consistent with the "Sensory Organization of

Perception" theory (Krendel and McRuer, 1960; McRuer and Jex,

1967), in which control-strategy development is assumed to undergo

three stages: (1) development of "compensatory" skills, in which

appropriate feedback laws are established for stabilization and
control; (2) development of "pursuit" skills, in which sufficient

knowledge is gained to allow application of a partial feedforward

strategy; and (3) a "precognitive" mode in which full advantage

is taken of any predictability of the external inputs.

In keeping with these notions, a third hypothesis was tested;

namely, that performance deficiencies early in practice can be

accounted for by a deficient internal model of the input statistics.

To test this hypothesis, the (mathematical) "pilot" was assumed

to have no knowledge of the correlations inherent in the forcing

function. A white-noise (internal) model of the input was

assumed, and the covariance of this white noise was adjusted to

- .match early-practice MSE scores, with other pilot-related parameters

fixed at values appropriate for asymptotic tracking.

Figure 4-3 shows that practice effects on pilot gain are

matched over much of the spectrum. However, low-frequency phase

effects (not seen in the data) are predicted, and the predicted

remnant spectrum is uniformly too low. Thus, the notion of a

s. s.
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deficient internal representation of the tracking input is not

sufficient as a stand-alone hypothesis to account for practice

effects.

While it is reasonable to expect that the subject's internal

model of the plant was also being refined during practice, model

analysis was restricted to consideration of input modeling for

two reasons. First, because of the mathematics involved, considera-

tion of certain types of input-model deficiencies can be treated

with considerably less computational cost than plant-model deficiencies.

Second, the plant can be stabilized with a grossly deficient input

model, and one has a rationale for choosing such a deficient model

(e.g., the untrained subject is unaware of correlations within the %. a.,

input signal). On the other hand, severely deficient plant models

cannot be explored because ,f resulting closed-loop instabilities,

and there is no correspondingly obvious candidate for a plant

model deficiency.

4.4 Combination of Observation Noise and Deficient Input Model

The foregoing results suggested a test of the combined

hypothesis of increased observation noise and a deficient input

model early in training. A gradient search was performed jointly

on the internal white-noise input covariance, and the observation

noise/signal ratio, to provide the best overall match to the

early-practice data. Remaining parameters were fixed at values

appropriate to asymptotic performance. Figure 4-4 shows that, on
balance, a good match to the early data was achieved with this

hypothesis.

4.5 Summary of the Hypothesis-Testing Exercise

The second analysis phase was begun with essentially a two-

parameter match to practice effects (observation noise/signal ratio
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and motor time constant), and it concluded with a different two-

parameter match (observation noise/signal ratio and a deficient

internal model). Since either treatment is able to provide an

acceptable data match, the decision concerning further model

development must be guided by the remaining criteria proposed in

the introduction; namely, one should pursue an approach that

makes sense in terms of psychomotor capabilities and is most

likely to lead to a model of predictive value.

Practice-related reduction in observation noise makes
intuitive sense. Since observation noise is the mathematical

device by which most of the pilot's "remnant" is accounted for,

time variations and nonlinearities are reflected in the observation

noise. One would expect that continued practice would bring about

a more linear and stable response strategy.

One might also expect continued practice to enhance the

operator's overall motor capability, which might well be reflected

as a practice-related reduction in the motor time constant.
However, as discussed in Chapter 2, extensive analysis of the data

base suggests that the apparent changes in motor time constant

are more directly related to the perceptual environment than to

direct "motor training". For example, the subject population

trained on the moving-base, stable-plant task had a lower average

motor time constant early in practice than the fixed-base popula-

tion had late in training. Since the subject populations were
matched for tracking ability prior to the study, it is not likely -..

that the apparent differences in motor time constants reflected
inherent differences in response bandwidth capabilities. On

balance, the evidence suggests that practice- and plant-related

motor time constant represent differences in "perceptual efficiency"

due perhaps to differences in the quality of the operator's

internal model.

That is, variations in only two parameters are required to account
for early/late performance differences. To match performance in a
specific condition, non-zero values are typically associated with at
least four "pilot-related" parameters, given the current model structure. _
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If we accept the notion that the subject's internal model

changes with practice, we should be prepared to consider changes

in the internal model of the plant as well as of the input.

Furthermore, subsequent model development should address the

problem of predicting how the internal model (and the observation

noise/signal ratio) changes with practice, and how these practice

effects are modified by the details of the task environment.

-. These issues are addressed in a preliminary manner in the follow-

- ing chapter.

N= N
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5. INTERNAL MODEL DEVELOPMENT: A PRELIMINARY TREATMENT

The practice effects explored in the precedinq two chapters,
along with some earlier results with high-order control systems,

suggest that development of the operator's internal model of the

cont' 1 system is an important aspect of the "learning" that takes

place in control (and presumably monitoring and decision) tasks.

One way of treating internal model development is to add

a fourth adaptive element -- the "optimal identifier" -- to the

OCM model structure as indicz ed in Figure 5-1. As the name

implies, this model element would mimic the way in which the

human operator identifies plant and input dynamics, and it would

use this information to properly configure the remaining adaptive

model elements.

Because of limited resources, a highly simplified model

analysis was performed: one not in keepinq with the framework

of the OCM, but yet sufficient to allow a feasibility test. A

two-operator task was considered, in which a "pilot" performed

the roll-axis tracking task used in the stable-plant study

referenced above, and an independent "observer" attempted to

identify the plant dynamics. The observer performed this identifi-

cation on the basis of the pilot's control input and the tracking

error, and was prevented from making a perfect identification

because of the effects of the tracking input (not directly available

to the observer). The observer performed the identification by 'S

adjusting the parameters of a fixed-form model to reduce the

mean-squared difference between "predicted" and observed tracking

error.

A signal flow diagram of the hypothesized measurement situation

is shown in Figure 5-2. All signals and system elements in this

diagram are Laplace-transformed variables.
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Closed-LOOP Control System

1C V E

IR 1 H

U
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Observer's Measurement Situation

C = Total Input to Vehicle

E = Tracking Error

E = Predicted Tracking Error .

R = Pilot Remnant

U = Pilot's Control Input

Z = Estimation Error

H = Pilot's Describing Function

V = Vehicle Dynamics

V = Estimated Vehicle Dynamics

Figure 5-2. Flow Diagram of Hypothesized Identification Task
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The closed-loop tracking task is represented by the upperI

" .. dotted box. The human operator ("pilot") H responds to tracking 2
error E by generating a control input U. This control input is

corrupted by an uncorrelated noise component, or remnant, R.

The control signal is added with the disturbance input I to form

the total input C to the controlled-element ("vehicle") V.

The observer (represented by the lower dotted box) is assumed

to have perfect sensing of the tracking error and the operator's

total control input (i.e., the sum of the input-correlated and

remnant-related control actions). The observer is assumed to

generate a model, or estimate, of the vehicle V, which yields

a predicted tracking error E when excited by the pilot's control

input. The observer adjusts the estimated vehicle dynamics to

yield minimum mean-squared estimation error Z.

The following spectral quantities are computed from Figure

5-2:

I2

ei ei = (5-1)
1 + HV

~rr .kUru r = -r (5-2) V
4 r r 11 + HVI 2 -----

jI+HVI IVI 2P V
.i rr (5 -3)

:,#ZZ - (1 + HVf 2 (53)

where subscripts "i" and "r" represent input-correlated and

remnant-related signal components. Making use of the relation-

ships expressed in Equations 5-1 and 5-2, we write Equation 5-3

,;.. as ^2IIa s l-HVj 2 ei + Iv-v u (5-4)

zze ie. Iv u
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The vehicle dynamics "identified" by the observer is the V that

minimizes mean-squared Z, and the spectrum of this minimal Z

is taken as the estimate of the tracking input. That is,

= (5-5)'.ii z z ...

The above analysis is predicated on the assumption that the

observer adjusts his model to minimize the difference between

the predicted and actual tracking error. Alternatively, the model

may be adjusted to minimize the prediction error for any derivative

(or combination of derivatives) of the tracking error. In the case

of the nth derivative, the model V is adjusted to minimize the

. power contained in

z z = 1w Z z
n n

Note that the identification task posed here is the mathe- \ "

matical dual of the problem of identifying pilot response behavior.

In this case, identification is enhanced by the occurrence of

large remnant power and small tracking input power. For zero

tracking input, ID is minimized by setting V=V; that is,

" perfect identification results. On the other hand, if remnant

is zero, DZZ is minimized by setting V = -1/H. The prediction

that pilot remnant will aid the identification process is

consistent with notions of system identification that have
appeared in the control literature.

No experimental data were used for this analysis. Instead,

tracking "data" were generated by the OCM using nominal values
for pilot-related parameters. Analysis was performed in the

frequency domain. Parameters of the analysis included plant

dynamics, perceptual cues available to the observer, and the

order of the internal model adopted by the observer.
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Because of the preliminary nature of this modeling effort,

the following results are not intended as accurate predictions

of a human operator's ability to identify system dynamics, but

rather to explore gross trends relating internal models to

elements of the task environment.

The results of four tests performed with this approximate

model are shown in Figure 5-3. We first describe the test results

and then discuss the implications with regard to pilot model

development.

To explore the influence of the cueing environment on the

operator's internal model of the plant, analysis was performed

with error displacement, rate, or acceleration information assumed

available to the operator. The observer was assumed to have a

full- (in this case, second-) order model of the plant. Figure

5-3a shows that the transfer function of the identified vehicle

dynamics (continuous curves) progressively approached the true

plant response (discrete points) as higher-order information was
made available.

A subsequent analysis explored the interaction between the

available perceptual cues, the order of the observer's internal

model, and the identified plant dynamics. Error-rate and error-

acceleration cues were considered, as were first- and second-

order plant models. Figure 5-3b shows that, with only error-

rate available, the order of the internal model had little

influence on how accurately the plant transfer function was

identified (except at the highest frequencies, where signal power
is relatively low). However, when acceleration cues were ..
available (Figure 5-3c), the second-order plant model gave a

noticeably closer match to the true plant dynamics.

*For simplicity, combinations of these cues were not considered,

although in practice one would expect a human operator to use all
relevant information available.
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A final test was performed to explore the effects of plant

dynamics on the fidelity of the predicted internal plant model.

Two sets of plant dynamics were considered: simple rate control

(designated as "unfiltered" dynamics in Figure 5-3d), and rate

control cascaded with a second-order Butterworth filter having

a break frequency of 1 rad/sec ("filtered" dynamics). In each

case, the observer was assumed to have an internal model of the

appropriate order. Figure 5-3d shows that a qualitatively better

estimate of plant dynamics was obtained for the lower-order plant.

The trends revealed by this analytical feasibility study are

consistent with the experimental trends reported above: conditions

which led to an improvement in the predicted internal model of

the plant correspond to experimental conditions that led to an

apparent increase in information-processing efficiency. Further-

more, certain cause-and-effect relationships are suggested:

1. The results of Figure 5-3a suggest that the reduced values for
pilot-related model parameters associated with whole-body
motion cueing are due to improved internal plant model
attainable in this cueing environment.

2. Figures 5-3b and 5-3c suggest that learning is more rapid
in a motion-base environment partly because the operator is
more readily able to determine the correct order of the
plant dynamics.

3. Figure 5-3d supports the notion that the apparent degradation
in information-processing capabilities associated with high-
order plants is, in part, a reflection of a degraded internal
model of the task environment.

It must be re-emphasized that the model results summarized

in Figure 5-3 are highly qualitative and are intended only to

illustrate trends. The intent of this final analysis phase has

been to demonstrate the feasibility of considering deficient
internal models and of pursuing mechanisms to predict such

deficiencies. The preliminary results reported here suggest that

such an approach is feasible.
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APPENDIX A

SUPPLEMENTAL ANALYSIS PERTAINING TO BACKGROUND MATERIAL

This appendix summarizes additional model analysis relevant

to the material presented in the background section (Chapter 2).

Specifically, differences in time delay and in motor time constant

".4 across experimental conditions are explored.

A.1 Importance of Time Delay Differences

- N Sensitivity analysis was performed to explore the importance

of the differences in the time delays identified for a simple

rate-control task (Configuration 2, Table 2-1), and for a task

using rate-control cascaded with a low-bandwidth Butterworth

filter (Configuration 4, Table 2-1). Time delays were 0.15 and

0.35 seconds, respectively, for these two cases.

Two types of sensitivity analyses were performed. First, the

qualitative significance test described in Section 2.2.2 was

performed to determine whether or not the observed time delay

. difference was significant in terms of model-matching error.

* Matching errors of 14.0 and 7.92 were obtained for the rate- and

.* filtered-rate-control cases, respectively, with all independent

parameters adjusted for minimum matching error. A second set of

matching errors -- 25.9 and 20.8, respective.ly -- were obtained

for these two cases with time delay fixed at the average value of

0.25 seconds. Matching error ratios of 18.5 and 2.6 were computed

from these results, indicating that the task-related change in

time delay was "significant" according to the criterion error

ratio of 2.0.

The four remaining independent model parameters (two observa-

tion noises, motor noise, and motor time constant) were reoptimized

during the fixed-delay matching exercises. Thus, the task-

related time-delay change cannot be compensated for by readjustments
of one or more remaining model parameters.
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To explore the potential importance of motivational factors,

a second sensitivity test was performed to determine the effect of

time delay on tracking error performance for the filtered-rate

plant. Error scores were predicted for time delays of 0.15 and

0.35 seconds, with remaining model parameters fixed at the values

that provided the best match to the experimental data. The larger

delay yielded a predicted rms tracking error score nearly 60%

greater than that predicted for the smaller delay. Thus, given the

- particular model structure applied to this analysis, we fail to

support the hypothesis that the larger time delay is due to

indifference on the part of the subjects.

A.2 Analysis of Motor Time Constant Differences

Some of the previous results represented in Table 2-1 were

reanalyzed to test the hypothesis that task-related differences

in motor time constant reflect the combined effect of a pilot
bandwidth limitation plus a true subjective penalty on generating .I

large rates of change of control force. Specifically, the

control-rate cost coefficient was assumed to be of the form

G =G + G (A-l)
0 p

where G is the cost coefficient, G is the component due to some

minimum motor time constant Tm , and G is the component related
9o p

to physical activity in pounds force per second. The base level

Tmo may be interpreted as a pilot bandwidth limitation, or as the

result of a multiplicative motor noise process reflecting, in

part, the operator's uncertainties about system response (Levison,

1981; Caglayan and Levison, 1980).
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The first test of this hypothesis, applied to data obtained

from the Gain/Bandwidth Study of Levison (1971), yielded encouraginq

results. The first two columns of Table A-la show values for

motor time constant and corresponding control-rate cost (G of

Equation A-l) for the simple and filtered rate-control tasks

identified as Configurations 2,3, and 4 in Table 2-1. Values

shown for G are numerically consistent with the following total

performance objective:

'..',2 2 ""
J = (e + G 2 (A-2)

e

where J is the total "cost", ae the tracking error standard

deviation score in degrees visual arc, and a. the control-rate

standard deviation score in pounds/second of control force.

Because of the nonlinear and plant-dependent relationship .

between G and Tm it was not feasible to perform a simple

regression analysis to find the Tm and G that would provide the

best joint match to the three experimental conditions. Instead,

the value Tmo=0.0704 found for the simple rate dynamics was

assumed to reflect the intrinsic bandwidth limitation, and G

was then computed (separately for each plant) as G - G(Tmo).
-: * 0

Columns 4 and 5 of Table A-la contain values for G and G
0 p

identified by this process. Finally, an average value for G
wasotainpe
was obtained by computing the geometric mean of the G identified

4.44 p
for the two filtered plants, and Equation A-1 was used to "predict"
a new value G for each plant, using the average G and the plant-

p
specific G

Comparison of the second and last columns of Table A-la

reveal that the predicted G were very close to the corresponding

G obtained in the original matching exercise. Recomputation of

°'..
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Table A-1. Component Analysis of the Motor Time Constant

~.*. .,a) Simple and Filtered Rate Control

I Dynamics I Tm I G Tm* G G *

_ _ I0 -0 p

Simple Rate Control .0704 7.74E-3 .0704 7.74E-3 0.0 8.75E-3

Rate Control + .137 1.05E-3 .0704 1.57E-5 1.03E-3 1.03E-3

2 rad/sec filter

Rate Control + .174 9.92E-4 .0704 1.95E-6 9.90E-4] .01E-3

1 rad/sec filter

*By assumvtion

"*Based onGp 1.01E-3

b) Rate, Filtered-Rate, and Acceleration Control

_ _ _ _ _ _ _ _ _G 0 0_ _ _ _ I

*_Simple Rate Control .0704 7.74E-3 .0704 7.74E-3 0.0 1.27E-2

Rate Con trol1 + ~ I7 T T 7 ~ 1 3 ~ ~ ~ W~
1 rad/sec Filter

Approximate .109 2.63E-2 .0704 1.88E-3 2.44E-2 6.79E-3
Acceleration Control

*By assumption

"*Based on Gp 4.81E-3

L4
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model-matching errors using G yielded neqliqible increase over

the matching errors obtained with the best-fit C. Thus, the

results of this analysis (based on data obtained from a sinqIe

set of test subjects) support the hypothesis that chanqes in the

identified motor time constants do not reflect differences in

information-processing capacity, but rather a combined influence

of underlying response bandwidth limitations plus a consistent

* penalty on generating control activity.

This hypothesis failed for support when the analysis described

above was applied to the following set of conditions: (1) simple

rate control, (2) rate plus 1 rad/sec Butterworth filter, and (3)

approximate acceleration control (Configuration 6 of Table 2-1).

The various cost and time-constant parameters identified in this

analysis are shown in Table A-lb. Again, the motor time constant

found for the rate-control task was taken as the baseline value

for TmO , and non-zero estimates for the physical cost component

G were derived from data provided by the remaining two tasks.
p
Column 4 of the table shows tLat the two estimates so obtained

differed by more than an order of magnitude.

As before, the geometric mean of the two non-zero estimates

of G was used to predict new cost weightings G for each of the -
p

three plants. Unlike the previous analysis, however, these --

weightings yielded model-matching errors that were "significantly"

greater than obtained with the best-fitting weightings. Specifical-

ly, matching error ratios (defined in Section 2.2.2) were 1.3,
5.0, and 4.6, respectively for the rate, filtered-rate, and

acceleration plants.

Now, there is no guarantee that the value for Tm used in

this analysis is the optimal value; there may be an alternate

choice that provides a better overall match to the collective data.
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A small sensitivity analysis indicated, however, that modifying

Tm would improve the match to a given condition only at the
0

expense of degrading the match to at least one other condition.

Therefore it seems unlikely that fixed values can be found for
- the independent parameters of Equation A-1 that will satisfactorily

account for the apparent task-related changes in motor time

constant revealed in Table 2-1.

Although the acceleration-control data were obtained in a

different experiment (performed by a different experimenter) than

the rate and filtered-rate data, there was considerable commonality

across the experiments:

1. Error was indicated by translation of an electronically-

presented error indicator referenced to an electronically-

presented zero indicator.

2. Controls were hand-operated and nearly isometric.

3. Subjects were well-trained, and were all instructed to

minimize mean-squared error.

While some differences in performance capabilities would be

expected from different subject populations, an order of magnitude

difference in the subjective penalty assigned to rate of change

of control does not seem reasonable on this basis alone. Thus,

we tentatively conclude that (1) some other combination of band-

width and physical constraints will match the data base, or that

(2) apparent task-related changes in the motor time constant

parameter reflect some other factor limiting perceptual-motor

performance that is not directly accounted for in our modeling

philosophy.
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APPENDIX B

SUPPLEMENTAL ANALYSIS CONCERNING EFFECTS OF PRACTICE

Additional experimental and model results relatinq to practice

effects are presented in this Appendix. A description of the data

base and a summary of experimental and model results may be found

in Chapter 3.

B.1 Effects of Practice on Frequency Response

Experimental and model results are presented as follows for

individual subjects:

Figure B-1 (5 parts) : static group, stable-plant study.

V Figure B-2 (4 parts): motion group, stable-plant study.

Figure B-3 (6 parts) : unstable-plant study

Describing function data are plotted only where signal/noise

considerations indicate that the data are reliable (Levison,

1971). Consequently, some of the curves pertaining to early

practice conditions span a relatively restricted frequency range.
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B.2 Effects of Practice on Independent Model Parameters

Tables B-i and B-2 contain model parameters identified via

the unconstrained and constrained search procedures, respectively,

for the stable-plant study. Population means and standard
deviations are shown along with data for individual subjects.

Parameters for subjects participating in the unstable-plant

study are given in Table B-3 for the unconstrained search. (The

constrained search performed on the unstable-plant data was

performed on the population means only, not on data obtained from

individual subjects.) The rows designated as "average" contain

the parameters identified from the ensemble-averaged data, as

contrasted with the means of the parameters identified for

individual subjects.
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Table B-i. Pilot Parameters Identified from the Stable-Plant
Data: Unconstrained Search

Para ieter

Subject Pe Pe P5 Pm Td i  Tm

a) Static Group, Early

CP - 5.6 -18.7 -- -27.0 .235 .345
DC -14.0 -14.7 -- -49.5 .169 .220
DS -10.0 -14.0 -- -36.8 .182 .145
TB -10.8 -16.0 -- -55.6 .198 .162
VS -11.9 -14.5 -- -40.6 .152 .152
MEAN -10.5 -15.6 -- -41.9 .187 .205
STD DEV 3.1 1.9 -- 11.1 .032 .084

b) Static Group, Late

CP -21.6 -16.3 -- -29.4 .161 .169
DC -24.0 -21.1 -- -41.0 .280 .127
DS -25.4 -17.6 -- -35.9 .206 .131
TB -21.3 -17.3 -- -56.5 .218 .112
VS -20.3 -21.2 -- -40.3 .238 .138
MEAN -22.5 -18.7 -- -40.6 .221 .135
STD DEV 2.1 2.3 -- 10.1 .044 .021

a) Motion Group, Early

CF -23.3 -14.2 -20.3 -60.0 .200 .112
DM -16.4 -16.5 -18.6 -60.0 .200 .122
ML - 8.4 -10.8 -16.4 -60.0 .200 .141
RK - 5.3 -14.9 -22.6 -60.0 .200 .109
MEAN -13.4 -14.1 -19.5 -60.0 .200 .121
STD DEV 8.1 2.4 2.6 .. .. .015

b) Motion Group, Late

CF -30.7 -18.4 -25.4 -60.0 .200 .0838
DM -32.4 -19.8 -25.1 -60.0 .200 .0770
ML -32.8 - 8.7 -24.4 -60.0 .200 .119
RK -33.6 - 7.8 -24.7 -60.0 .200 .118
MEAN -32.4 -13.7 -24.9 -60.0 .200 .0995
STD DEV 1.2 6.3 4.4 -- .0222
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Table B-2. Pilot Parameters Identified from the Stable-Plant
Data: Constrained Search

Parameter _____

Su itPe=P6 Pm Td Tm

a) Static Group, Early

CP -17.0 -29.0 .200 .342
DC -15.5 -45.0 .200 .221
DS -13.0 -36.0 .200 .145
TB -15.5 -56.0 .200 .162
VS -15.0 -40.0 .200 .152
IMEAN -15.2 -41.2 .200 .204
STD DEV 1.4 10.1 -- .083

b) Static Group, Late

CP -19.0 -29.0 .200 .170U
DC -18.5 -45.0 .200 .125
DS -20.0 -36.0 .200 .130
TB -17.5 -56.0 .200 .112
vs -19.5 -40.0 .200 .138
MEAN -18.9 -41.2 .200 .135
STD DEV 1.0 10.1 -- .022

c) Notion Group, Early

CF-18.5 -60.0 .200 .112
DH -17.5 -60.0 .200 .122
ML -11.0 -60.0 .200 .145
RK -14.5 -60.0 .200 .120
MEAN -15.4 -60.0 .200 .124
STD DEV 3.4 -- .015

d) Motion Group, Late

CF -24.5 -60.0 .200 .0836
DM -24.5 -60.0 .200 .0770
ML -23.5 -60.0 .200 .119
RK -24.0 -60.0 .200 .118
MEAN -24.1 -60.0 .200 .0994 ~
STD DEV 0.5 -- .0222
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Table B-3. Pilot Parameters Identified from the
Unstable-Plant Data A.

jSubject PP&Pm T___ Tm

a) Early _ _ _ _ _ _ _ _ _ _ _ _ _ _

DM1 -17.2 -15.7 -25.7 .0809 .118
KDH -15.0 -21.3 -44.7 .152 .128
KJW -20.6 -21.9 -51.5 .156 .0633
LEK -16.3 -18.8 -47.9 .175 .141
SAH -79 -10 -47.4 .136 .0921
TMV -20.7 -21.6 -47.9 .147 .0853
MEAN -18.0 -20.0 -44.2 .141 .105
STD DEV 2.3 2.4 9.3 .032 .029
AVERAGE -16.9 -19.9 -45.3 .131 .089 -

b) Late

DM1 -23.4 -22.1 -31.1 .117 .0933
KDH -25.1 -21.7 -41.0 .143 .0990
KJW -26.3 -23.2 -50.0 .141 .0604
LEK -24.7 -21.2 -36.7 .151 .0721
SAH -23.7 -22.4 -48.2 .136 .0741
T14V -22.5 -22.7 -46.1 .123 .0862
MEAN -24.3 -22.2 -42.2 .135 .0809
STD DEV 1.4 0.7 7.3 .013 .0145
AVERAGE -23.8 -22.0 -43.6 .135 .0783
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B.3 Effects of Search Constraint on Matching Error

Model parameters were initially identified without constraints

(other than the constraint that all parameters be numerically

positive). Data from the stable-plant study were subsequently

re-analyzed subject to two levels of constraint. For constraint I
conditions Cl, time delay was fixed at 0.2 seconds for all subjects.

The motor noise/signal ratio was fixed for each static-group subject

at the average of the early and late values previously identified;

whereas the motor noise/signal ratio was fixed at -60 dB for all

motion-group subjects. Constraint level C2 included the constraints

of Cl, plus the additional constraint that a single observation

noise/signal ratio be applied to all observational variables

(i.e., Pe = P4 for the static group, Pe=Pe=Pe for the motion

group) . *

Table B-4 shows matching errors along with matching error

ratios relative to the unconstrained error, for the subjects

participating in the stable-plant study. Matching error ratios

are absent for one case -- Subject ML, motion group, early

practice -- because of a failure for the OCM algorithms to

converge during the unconstrained search. All calculations were

performed on three-place numbers and then rounded off to two digits

for presentation.
A certain amount of caution should be exercised when inter-

preting the matching errors shown in Table B-4, as these errors

are determined by the variability in the data as well as by the

actual degree of mismatch (see Section 2.2.2). Nevertheless,

the larger errors shown for the early-practice condition confirm

Because the quasi-Newton search routine implemented at the time
of this analysis did not specifically allow the user to constrain
all noise/signal ratios to a single value, the C2 search (a 2-
parameter search) was performed manually. Hence, values for noise/
signal ratio shown in Table B-2 are quantized to the nearest 0.5 dB.
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Table B-4. Effects of Search Constraints on Matching Error

Early Late
Matching Error Matching Error

Subject Constraint* Actual tRatio Actual Ratio

a) Static Group, Stable-Plant Study

U 38 -- 7.4 --

CP Cl 40 1.0 7.8 1.1
C2 42 1.1 9.1 1.2

U 18 -- 9.1 --

DC Cl 18 1.0 10 1.1
C2 19 1.1 12 1.3

U 1.8 -- 8.1 --
DS Cl 1.9 1.0 8.1 1.0

C2 3.6 2.0 12. 1.5

U 19 -- 2.6 --
TB Cl 20 1.0 2.6 1.0

C2 21 1.1 3.8 1.5

U 13 -- 4.1 --
VS C1 14 1.0 4.3 1.0

C2 16 1.2 4.4 1.1

b) Motion Group, Stable-Plant Study

U 17 -- 6.2 --

CF C1 17 1.0 6.2 1.0
C2 18 1.1 7.0 1.1

U 7.5 -- 6.6 --
DM C1 7.5 1.0 6.6 1.0

C2 8.5 1.1 8.5 1.3

U ....- 11 --

ML C1 14 -- 11 1.1
C2 17 -- 14 1.3.

U 6.2 -- 5.5 --

RK C1 12 2.0 6.2 1.1
C2 33 5.3 8.2 1.5

*Constraints were as follows:

U: unconstrained

Cl: Time delay fixed at 0.2 seconds, all runs. Motor noise/
signal ratio fixed at average of early and late for static
group, -60 dB for motion group.

C2: Same as Cl, plus Pe=Pb for static group, Pe=Pb=Pe for
motion group.
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the subjective impressions obtained from visual inspection of

Figures B-I and B-2; namely, that the OCM tended to provide a

better match to the data obtained late in the training phase.

Table B-4 shows that in 16 out of 17 cases, the Cl constraint

(fixed delay and motor noise/signal ratio) increased the matching

error ratio by less than 15%. A two-fold increase was found for

the remaining case (RK, motion group, early), but the relative

lack of valid describing function data (see Figure B-2d) for this

condition renders the model-match suspect. In summary, fixing time

delay and motor noise/signal ratio had no significant influence

on model-matching error, and model analysis made with this constraint

was justified.

Constraining observation noise/signal ratios to be uniform

across perceptual variables tended to degrade the matching error

by a greater amount, but generally not enough to be "significant"

according to the error ratio criterion of 2.0. Table B-4 shows

that this constraint yielded a matching error ratio of under 1.25

for about half the cases, over 2.0 in only two cases.

T-tests were performed on paired differences between error

and error-rate noise/signal ratios for the stable-plant (static

group only) and performance-analyzer subject populations. A weak

significance level (alpha=.05) was found for the performance-

analyzer subjects late in training; no significance (alpha less

than 0.05) was found for the remaining three tests.

The results of the significance tests, therefore, generally

justify the uniform-ratio constraint applied to this data base.

Nevertheless, the noise ratio differences did show consistent trends.

With few exceptions, the noise/signal ratios associated with

perception of error were greater than error-rate noise/signal

ratios early in training, whereas the reverse trend was found in

the data obtained late in training.
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